<li>Given that <math>p^{\tfrac{1}{3}} = \frac{\sqrt[3]{q}}{r}</math>, make q the subject of the equation.<ol type="a">
<ol type="a">
<li><math>q=p\sqrt{r}</math></li>
<li>Option a</li>
<li><math>q=p^{3}r</math></li>
<li>Option b</li>
<li><math>q=pr^3</math></li>
<li>Option c</li>
<li><math>q=pr^{\tfrac{1}{3}}</math></li>
<li>Option d</li>
</ol>
</ol>
</li>
</li>
<li>Question 15
<li>[[File:WA2013 MATH P1Q015.jpg|thumb|190x190px]]In a diagram, PRST is a square. If |PQ| = 24cm. |QR| = 10cm and <math>\angle</math>PQR =90°; find the perimeter of the polygon PQRST.
<ol type="a">
<ol type="a">
<li>Option a</li>
<li>112cm</li>
<li>Option b</li>
<li>98cm</li>
<li>Option c</li>
<li>86cm</li>
<li>Option d</li>
<li>84cm</li>
</ol>
</ol>
</li>
</li>
<li>Question 16
<li>[[File:WA2013 MATH P1Q016.jpg|thumb|194x194px]]In the diagram, the height of a flagpole (TF) and the length of its shadow (FL) are in the ratio 6:8. Using K as a constant of proportionality, find the shortest distance between T and L.
<ol type="a">
<ol type="a">
<li>Option a</li>
<li>7K units</li>
<li>Option b</li>
<li>10K units</li>
<li>Option c</li>
<li>12K units</li>
<li>Option d</li>
<li>14K units</li>
</ol>
</ol>
</li>
</li>
<li>Question 17
<li>A chord is 2cm from the centre of a circle. If the radius of the circle is 5cm, find the length of the chord.
<ol type="a">
<ol type="a">
<li>Option a</li>
<li><math>2\sqrt{21cm}</math></li>
<li>Option b</li>
<li><math>\sqrt{42}</math>cm</li>
<li>Option c</li>
<li><math>2\sqrt{19cm}</math></li>
<li>Option d</li>
<li><math>\sqrt{21cm}</math></li>
</ol>
</ol>
</li>
</li>
<li>Question 18
<li>A cube and a cuboid have the same base area. The volume of the cube is 64 cm³ while that of the cuboid is 80 cm³?.
<ol type="a">
<ol type="a">
<li>Option a</li>
<li>2 cm</li>
<li>Option b</li>
<li>3 cm</li>
<li>Option c</li>
<li>5 cm</li>
<li>Option d</li>
<li>6 cm</li>
</ol>
</ol>
</li>
</li>
Revision as of 00:01, 21 August 2024
This page is currently under construction. Please check back later for updates. If you can help improve this page, please contribute!
Objective Test Questions
Multiply 2.7 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{-4}}
by 6.3 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^6}
and leave your answer in standard form.
1.7 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^3}
1.70 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^3}
1.701 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^3}
17.01 × Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^3}
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^{(2-x)} = 3}
, find x.
1
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{2}}
2
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{2}}
In what number base is the addition 465 + 24 + 225 = 1050?
Ten
Nine
Eight
Seven
Simplify: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1\tfrac{7}{8}\times2\tfrac{2}{5}}{6\tfrac{3}{4} \div \tfrac{3}{4}}}
9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\frac{1}{2}}
2
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
If Un = n(n2 + 1), evaluate U5 - U4.
18
56
62
80
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \surd50 -K\surd8=\tfrac{2}{\surd2}}
-2
-1
1
2
A sales boy gave a change of ₦68 instead of ₦72. Calculate his percentage error.
4%
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5\frac{5}{9}%}
5Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{15}{17}%}
7%
Four oranges sell for ₦x and three mangoes sell for ₦y. Olu bought 24 oranges and 12 mangoes. How much did he pay in terms of x and y?
₦(4x + 6y)
₦(6x + 4y)
₦(24x + 12y)
₦(12x + 24y)
Simplify: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x^2-y^2}{(x + y)^2}+\frac{(x - y)^2}{3x + 3y}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x - y}{3}}
x + y
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{x - y}}
x - y
Solve the inequality: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2x - 5}{2}<(2 - x)}
x > 0
x < Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{1}{4}}
x > Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\tfrac{1}{2}}
x < Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\tfrac{1}{4}}
If x = 64 and y = 27, calculate: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x^{\tfrac{1}{2}} - y^{\tfrac{1}{3}}}{y - x^\tfrac{2}{5}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\tfrac{1}{5}}
1
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{5}{11}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{11}{43}}
Which of the following lines represents the solution of the inequality 7x < 9x —4?
Option a
Option b
Option c
Option d
If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
x + 2y = 3 and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{2}}
x - 2y = 1, find (x + y).
3
2
1
0
Given that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^{\tfrac{1}{3}} = \frac{\sqrt[3]{q}}{r}}
, make q the subject of the equation.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=p\sqrt{r}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=p^{3}r}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=pr^3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=pr^{\tfrac{1}{3}}}
In a diagram, PRST is a square. If |PQ| = 24cm. |QR| = 10cm and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle}
PQR =90°; find the perimeter of the polygon PQRST.
112cm
98cm
86cm
84cm
In the diagram, the height of a flagpole (TF) and the length of its shadow (FL) are in the ratio 6:8. Using K as a constant of proportionality, find the shortest distance between T and L.
7K units
10K units
12K units
14K units
A chord is 2cm from the centre of a circle. If the radius of the circle is 5cm, find the length of the chord.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{21cm}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{42}}
cm
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{19cm}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{21cm}}
A cube and a cuboid have the same base area. The volume of the cube is 64 cm³ while that of the cuboid is 80 cm³?.