2000 General Mathematics WAEC SSCE (School Candidates) May/June: Difference between revisions
From WikiQuestions
No edit summary |
(Complete the objective sections without diagrams) |
||
Line 2: | Line 2: | ||
=== Objective Test Questions === | === Objective Test Questions === | ||
<ol> | <ol> | ||
<li>Express <math>\frac{7}{19}</math> as a percentage, correct to 1 decimal place. | |||
<ol type="a"> | |||
<li>2.7%</li> | |||
<li>3.7%</li> | |||
<li>27.1%</li> | |||
<li>36.8%</li> | |||
</ol> | |||
</li> | |||
<li>Express 398753 correct to three significant figures. | |||
<ol type="a"> | |||
<li>398000</li> | |||
<li>398700</li> | |||
<li>398800</li> | |||
<li>399000</li> | |||
</ol> | |||
</li> | |||
<li>Simplify <math>\frac{10}{\sqrt{32}}</math> | |||
<ol type="a"> | |||
<li><math>\frac{5}{4}\sqrt{2}</math></li> | |||
<li><math>\frac{4}{5}\sqrt{2}</math></li> | |||
<li><math>\frac{5}{16}\sqrt{2}</math></li> | |||
<li><math>\frac{16}{5}\sqrt{2}</math></li> | |||
</ol> | |||
</li> | |||
<li>Find the missing number in base seven addition: | |||
<math> | |||
\begin{array}{r} | |||
4\;3\;2\;1_7 \\ | |||
1\;2\;3\;4_7 \\ | |||
+\ ****_7 \\ | |||
\hline | |||
1\;2\;3\;4\;1_7 \\ | |||
\end{array} | |||
</math> | |||
<ol type="a"> | |||
<li>3453</li> | |||
<li>5556</li> | |||
<li>6016</li> | |||
<li>13453</li> | |||
</ol> | |||
</li> | |||
<li>What fraction must be subtracted from the sum of <math>2\frac{1}{6}</math> and <math>2\frac{7}{12}</math> to give <math>3\frac{1}{4}</math>? | |||
<ol type="a"> | |||
<li><math>\frac{1}{2}</math></li> | |||
<li><math>\frac{1}{4}</math></li> | |||
<li><math>\frac{3}{4}</math></li> | |||
<li><math>\frac{5}{12}</math></li> | |||
</ol> | |||
</li> | |||
<li>Simplify <math>\left(\frac{16}{81}\right)^{-\frac{3}{4}} \times \surd{\frac{100}{81}}</math> | |||
<ol type="a"> | |||
<li><math>\frac{80}{243}</math></li> | |||
<li><math>\frac{20}{27}</math></li> | |||
<li><math>\frac{25}{6}</math></li> | |||
<li><math>\frac{15}{4}</math></li> | |||
</ol> | |||
</li> | |||
<li>Which number is a perfect cube? | |||
<ol type="a"> | |||
<li>350</li> | |||
<li>504</li> | |||
<li>950</li> | |||
<li>1728</li> | |||
</ol> | |||
</li> | |||
<li>If <math>104_x = 68</math>, find the value of <math>x</math> | |||
<ol type="a"> | |||
<li>5</li> | |||
<li>7</li> | |||
<li>8</li> | |||
<li>9</li> | |||
</ol> | |||
</li> | |||
<li>The ages of three men are in ratio 3:4:5. If difference between the ages of the oldest and youngest is 18 years, find the sum of the ages of the three men. | |||
<ol type="a"> | |||
<li>45 years</li> | |||
<li>72 years</li> | |||
<li>108 years</li> | |||
<li>216 years</li> | |||
</ol> | |||
</li> | |||
<li>Given that <math>109_4 x = -3</math>, find <math>x</math> | |||
<ol type="a"> | |||
<li><math>\frac{1}{81}</math></li> | |||
<li><math>\frac{1}{64}</math></li> | |||
<li>64</li> | |||
<li>81</li> | |||
</ol> | |||
</li> | |||
<li>Given that the logarithm of a number is <math>1.8732</math>, find correct to 2 significant figures, the square root of the number. | |||
<ol type="a"> | |||
<li>0.29</li> | |||
<li>0.75</li> | |||
<li>0.86</li> | |||
<li>0.93</li> | |||
</ol> | |||
</li> | |||
<li>A car moving at an average speead of <math>30\text{kmh}^{-1}</math>. How long does it take to cover 200m in? | |||
<ol type="a"> | |||
<li>2.4 sec</li> | |||
<li>24 sec</li> | |||
<li> | <li>144 sec</li> | ||
<li>240 sec</li> | |||
</ol> | |||
</li> | |||
<li>A man bought a television set on hire purchase for ₦<math>25,000</math>, out of which he paid ₦<math>10,000</math>. If he is allowed to pay the balance in eight equal instalments, find the value of each instalment. | |||
<ol type="a"> | |||
<li>₦<math>\,1,250</math></li> | |||
<li>₦<math>\,1,578</math></li> | |||
<li>₦<math>\,1,875</math></li> | |||
<li>₦<math>\,3,125</math></li> | |||
</ol> | |||
</li> | |||
A tree is <math>8\,\text{km}</math> due south of a building. Kofi is standing <math>8\,\text{km}</math> west of the tree. Use this information to answer questions 14 and 15 | |||
<li> How far is Kofi from the building? | |||
<ol type="a"> | |||
<li><math>4\sqrt{2}\,\text{km}</math></li> | |||
<li><math>8\,\text{km}</math></li> | |||
<li><math>8\sqrt{2}\,\text{km}</math></li> | |||
<li><math>16\,\text{km}</math></li> | |||
</ol> | |||
</li> | |||
<li>Find the bearing of Kofi from the building. | |||
<ol type="a"> | |||
<li><math>315^\circ</math></li> | |||
<li><math>270^\circ</math></li> | |||
<li><math>225^\circ</math></li> | |||
<li><math>135^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>Which of the following bearings is equivalent to <math>S50^\circ W</math>? | |||
<ol type="a"> | |||
<li><math>040^\circ</math></li> | |||
<li><math>130^\circ</math></li> | |||
<li><math>220^\circ</math></li> | |||
<li><math>230^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>In the diagram, AB is a vertical pole and BC is horizontal. If <math>|AC| = 10\,\text{m}</math> and <math>|BC| = 5\,\text{m}</math>, calculate the angle of depression of C from A. | |||
<ol type="a"> | |||
<li><math>63^\circ</math></li> | |||
<li><math>60^\circ</math></li> | |||
<li><math>45^\circ</math></li> | |||
<li><math>27^\circ</math></li> | |||
<li> | </ol> | ||
</li> | |||
The bar chart shows the distribution of marks scored by a group of students in a test. | |||
<li>How many students scored 4 marks and above? | |||
<ol type="a"> | |||
<li>15</li> | |||
<li>11</li> | |||
<li>10</li> | |||
<li>7</li> | |||
</ol> | |||
</li> | |||
<li>How many students took the test? | |||
<ol type="a"> | |||
<li>38</li> | |||
<li>22</li> | |||
<li>15</li> | |||
<li>11</li> | |||
</ol> | |||
</li> | |||
<li>Calculate the standard deviation of the following: <math>2,3,6,2,5,0,4,2</math> | |||
<ol type="a"> | |||
<li>1.5</li> | |||
<li>1.7</li> | |||
<li>1.8</li> | |||
<li>1.9</li> | |||
</ol> | |||
</li> | |||
<li>The probabilities that Kodjo and Adoga passed an examination are <math>\frac{3}{4}</math> and <math>\frac{3}{5}</math> respectively. Find the probability of both boys failing the examination. | |||
<ol type="a"> | |||
<li><math>\frac{1}{10}</math></li> | |||
<li><math>\frac{3}{10}</math></li> | |||
<li><math>\frac{9}{20}</math></li> | |||
<li><math>\frac{2}{3}</math></li> | |||
</ol> | |||
</li> | |||
<li>Which of the following triangles are congruent? | |||
<ol type="a"> | |||
<li>I and II only</li> | |||
<li>II and IV only</li> | |||
<li>I and II only</li> | |||
<li>II and III only</li> | |||
</ol> | |||
</li> | |||
<li>Which of the following statements is/are not true about a rectangle? I Each diagonal cuts the rectangle into two congruent triangles. II A rectangle has four lines of symmetry. III The diagonals intersect at right angles. | |||
<ol type="a"> | |||
<li>I and II only</li> | |||
<li>III only</li> | |||
<li>II only</li> | |||
<li>II and III only</li> | |||
</ol> | |||
</li> | |||
<li>In the diagram, PQRS is a circle with centre O. POR is a diameter and <math>\angle PBQ=40^\circ</math>. Calculate <math>\angle OSR</math>. | |||
<ol type="a"> | |||
<li><math>30^\circ</math></li> | |||
<li><math>40^\circ</math></li> | |||
<li><math>45^\circ</math></li> | |||
<li><math>50^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>Each side of a regular convex polygon subtends an angle of <math>30^\circ</math> at its centre. Calculate each interior angle. | |||
<ol type="a"> | |||
<li><math>75^\circ</math></li> | |||
<li><math>150^\circ</math></li> | |||
<li><math>160^\circ</math></li> | |||
<li><math>168^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>If the interior angles of a hexagon are <math>107^\circ,2x^\circ,150^\circ,95^\circ,(2x-15)^\circ</math> and <math>123^\circ</math>, find <math>x</math>. | |||
<ol type="a"> | |||
<li><math>57\frac{1}{2}^\circ</math></li> | |||
<li><math>65^\circ</math></li> | |||
<li><math>106^\circ</math></li> | |||
<li><math>120^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>In the diagram, POS and ROT are straight lines. OPQR is a parallelogram. <math>|OS|=|OT|</math> and <math>\angle OST=50^\circ</math>. Calculate <math>\angle OPQ</math>. | |||
<ol type="a"> | |||
<li><math>160^\circ</math></li> | |||
<li><math>140^\circ</math></li> | |||
<li><math>120^\circ</math></li> | |||
<li><math>100^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>Given that <math>x=-\frac{1}{2}</math> and <math>y=4</math>, evaluate <math>3x^2y + xy^2</math>. | |||
<ol type="a"> | |||
<li><math>-5</math></li> | |||
<li><math>-1</math></li> | |||
<li><math>4</math></li> | |||
<li><math>11</math></li> | |||
</ol> | |||
</li> | |||
<li>Given that <math>27^{\left(1+x\right)}=9</math>, find <math>x</math>. | |||
<ol type="a"> | |||
<li><math>-3</math></li> | |||
<li><math>-\frac{1}{3}</math></li> | |||
<li><math>3</math></li> | |||
<li><math>2</math></li> | |||
</ol> | |||
</li> | |||
<li>Given that <math>(2x+7)</math> is a factor of <math>2x^2 + 3x - 14</math>, find the other factor. | |||
<ol type="a"> | |||
<li><math>x+2</math></li> | |||
<li><math>2-x</math></li> | |||
<li><math>x-2</math></li> | |||
<li><math>x+1</math></li> | |||
</ol> | |||
</li> | |||
<li> | |||
Given that <math>(2x + 7)</math> is a factor of <math>2x^2 + 3x -14</math>, find the other factor. | |||
<ol type="a"> | |||
<li><math>x + 2</math></li> | |||
<li><math>2 - x</math></li> | |||
<li><math>x - 2</math></li> | |||
<li><math>x + 1</math></li> | |||
</ol> | |||
</li> | |||
<li>Simplify <math>\frac{1}{x - 3} \;\;\; \frac{3(x-1)}{x^2-9}</math> | |||
<ol type="a"> | |||
<li><math>\frac{x-1}{x-3}</math></li> | |||
<li><math>\frac{-2}{x+3}</math></li> | |||
<li><math>\frac{x-1}{x+3}</math></li> | |||
<li><math>\frac{4x}{2-9}</math></li> | |||
</ol> | |||
</li> | |||
<li>Which of the following number line represents the inequality <math>2 \leq x < 9</math>? | |||
</li> | |||
<li>Form an inequality for a distance <math>d</math> metres which is more than 18m but not more than 23m. | |||
<ol type="a"> | |||
<li><math>18 < d \leq 23</math></li> | |||
<li><math>18 \leq d < 23</math></li> | |||
<li><math>18 \leq d \leq 23</math></li> | |||
<li><math>d < 18</math> or <math>d > 23</math></li> | |||
</ol> | |||
</li> | |||
<li>Find the equation whose roots are -8 and 5. | |||
<ol type="a"> | |||
<li><math>x^2 + 13x + 40 = 0</math></li> | |||
<li><math>x^2 - 13x - 40 = 0</math></li> | |||
<li><math>x^2 - 3x + 40 = 0</math></li> | |||
<li><math>x^2 + 3x - 40 = 0</math></li> | |||
</ol> | |||
</li> | |||
<li>Make <math>t</math> the subject of the formula <math>\sqrt{\frac{t-p}{r}}</math> | |||
<ol type="a"> | |||
<li><math>\frac{rk^2 + p}{m^2}</math></li> | |||
<li><math>\frac{rk^2 + pm^2}{m^2}</math></li> | |||
<li><math>\frac{rk^2 - p}{m^2}</math></li> | |||
<li><math>\frac{rk^2 - p^2}{m^2}</math></li> | |||
</ol> | |||
</li> | |||
<li>Solve the equation <math>3y^2 = 27y</math> | |||
<ol type="a"> | |||
<li><math>y = 0</math> or <math>3</math></li> | |||
<li><math>y = 0</math> or <math>9</math></li> | |||
<li><math>y = -3</math> or <math>3</math></li> | |||
<li><math>y = 3</math> or <math>9</math></li> | |||
</ol> | |||
</li> | |||
<li>Find the value of <math>x</math> such that the expression <math>\frac{1}{x} + \frac{4}{3x} - \frac{5}{6x} + 1</math> equals zero | |||
<ol type="a"> | |||
<li><math>\frac{1}{6}</math></li> | |||
<li><math>\frac{1}{4}</math></li> | |||
<li><math>\frac{-3}{2}</math></li> | |||
<li><math>\frac{-7}{6}</math></li> | |||
</ol> | |||
</li> | |||
<li>Given that <math>p</math> varies directly as <math>q</math> while <math>q</math> varies inversely as <math>r</math>, which statement is true? | |||
<ol type="a"> | |||
<li><math>r</math> varies directly as <math>p</math></li> | |||
<li><math>p</math> varies inversely as <math>r</math></li> | |||
<li><math>p</math> varies directly as <math>r</math></li> | |||
<li><math>q</math> varies inversely as <math>p</math></li> | |||
</ol> | |||
</li> | |||
<li>In the diagram, PQS is a circle with center O. RST is a tangent at S and <math>\angle SOP = 96^\circ</math>. Find <math>\angle PST</math>. | |||
<ol type="a"> | |||
<li><math>42^\circ</math></li> | |||
< | <li><math>48^\circ</math></li> | ||
<li><math>60^\circ</math></li> | |||
<li><math>66^\circ</math></li> | |||
</ol> | |||
</li> | |||
<li>A bicycle wheel of radius 42 cm is rolled over a distance of 66 metres. How many revolutions does it make? (<math>\pi = \frac{22}{7}</math>) | |||
<ol type="a"> | |||
<li>2.5</li> | |||
<li>5</li> | |||
<li>25</li> | |||
<li>50</li> | |||
</ol> | |||
</li> | |||
<li>The height of a pyramid on a square base is 15cm. If the volume is 80cm³, find the area of the square base. | |||
<ol type="a"> | |||
<li>8cm²</li> | |||
<li>9.6cm²</li> | |||
<li>16cm²</li> | |||
<li>25cm²</li> | |||
</ol> | |||
</li> | |||
<li>A tap leaks at the rate of 2cm³ per second. How long will it take to fill a container of 45 litres capacity? (1 litre = 1000 cm³) | |||
<ol type="a"> | |||
<li>8 hours</li> | |||
<li>6 hours 15min</li> | |||
<li>4 hrs 25min</li> | |||
<li>3hrs</li> | |||
</ol> | |||
</li> | |||
<li>The lengths of the parallel sides of a trapezium are 5cm and 7cm. If its area is 120cm², find the perpendicular distance between the sides. | |||
<ol type="a"> | |||
<li>5.0cm</li> | |||
<li>6.9cm</li> | |||
<li>10.0cm</li> | |||
<li>20.0cm</li> | |||
</ol> | |||
</li> | |||
<li>The arc of a circle 50cm long subtends an angle of 75° at the center of the circle. Find, correct to 3 significant figures, the radius of the circle. [<math>\pi = \frac{22}{7}</math>]. | |||
<ol type="a"> | |||
<li>8.74cm</li> | |||
<li>38.2cm</li> | |||
<li>61.2cm</li> | |||
<li>76.4cm</li> | |||
</ol> | |||
</li> | |||
<li>In the diagram, |PQ| = |PS| and |RQ| = |RS|. Which statement is true? | |||
<ol type="a"> | |||
<li><math>\angle QPS = \angle QRS</math></li> | |||
<li>|PO| = |RO|</li> | |||
<li>OR ∥ PS</li> | |||
<li><math>\angle PQR = \angle PSR</math></li> | |||
</ol> | |||
</li> | |||
<li>The area of a circle is 38.5cm². Find its diameter (<math>\pi = \frac{22}{7}</math>). | |||
<ol type="a"> | |||
<li>22cm</li> | |||
<li>14cm</li> | |||
<li>7cm</li> | |||
<li>6cm</li> | |||
</ol> | |||
</li> | |||
<li>Find the volume (in cm³) of the solid. | |||
<ol type="a"> | |||
<li>100 cm³</li> | |||
<li>150cm³</li> | |||
<li>175cm³</li> | |||
<li>250cm³</li> | |||
</ol> | |||
</li> | |||
<li>Solve the equation <math>3 + 5x - 2x^2 = 0</math> | |||
<ol type="a"> | |||
<li><math>-\frac{1}{2}</math>, -3</li> | |||
<li>2, 3</li> | |||
<li>-2, 3</li> | |||
<li><math>-\frac{1}{2}</math>, 3</li> | |||
</ol> | |||
</li> | |||
<li>If the simple interest on ₦2,000 after 9 months is ₦60, at what rate per annum is the interest charged? | |||
<ol type="a"> | |||
<li>2<math>\frac{1}{4}</math>%</li> | |||
<li>4%</li> | |||
<li>5%</li> | |||
<li>6%</li> | |||
</ol> | |||
</li> | |||
</ol> | </ol> | ||
Revision as of 17:57, 14 August 2025
Objective Test Questions
- Express as a percentage, correct to 1 decimal place.
- 2.7%
- 3.7%
- 27.1%
- 36.8%
- Express 398753 correct to three significant figures.
- 398000
- 398700
- 398800
- 399000
- Simplify
- Find the missing number in base seven addition:
- 3453
- 5556
- 6016
- 13453
- What fraction must be subtracted from the sum of and to give ?
- Simplify
- Which number is a perfect cube?
- 350
- 504
- 950
- 1728
- If , find the value of
- 5
- 7
- 8
- 9
- The ages of three men are in ratio 3:4:5. If difference between the ages of the oldest and youngest is 18 years, find the sum of the ages of the three men.
- 45 years
- 72 years
- 108 years
- 216 years
- Given that , find
- 64
- 81
- Given that the logarithm of a number is , find correct to 2 significant figures, the square root of the number.
- 0.29
- 0.75
- 0.86
- 0.93
- A car moving at an average speead of . How long does it take to cover 200m in?
- 2.4 sec
- 24 sec
- 144 sec
- 240 sec
- A man bought a television set on hire purchase for ₦, out of which he paid ₦. If he is allowed to pay the balance in eight equal instalments, find the value of each instalment.
- ₦
- ₦
- ₦
- ₦
A tree is due south of a building. Kofi is standing west of the tree. Use this information to answer questions 14 and 15
- How far is Kofi from the building?
- Find the bearing of Kofi from the building.
- Which of the following bearings is equivalent to ?
- In the diagram, AB is a vertical pole and BC is horizontal. If and , calculate the angle of depression of C from A.
- How many students scored 4 marks and above?
- 15
- 11
- 10
- 7
- How many students took the test?
- 38
- 22
- 15
- 11
- Calculate the standard deviation of the following:
- 1.5
- 1.7
- 1.8
- 1.9
- The probabilities that Kodjo and Adoga passed an examination are and respectively. Find the probability of both boys failing the examination.
- Which of the following triangles are congruent?
- I and II only
- II and IV only
- I and II only
- II and III only
- Which of the following statements is/are not true about a rectangle? I Each diagonal cuts the rectangle into two congruent triangles. II A rectangle has four lines of symmetry. III The diagonals intersect at right angles.
- I and II only
- III only
- II only
- II and III only
- In the diagram, PQRS is a circle with centre O. POR is a diameter and . Calculate .
- Each side of a regular convex polygon subtends an angle of at its centre. Calculate each interior angle.
- If the interior angles of a hexagon are and , find .
- In the diagram, POS and ROT are straight lines. OPQR is a parallelogram. and . Calculate .
- Given that and , evaluate .
- Given that , find .
- Given that is a factor of , find the other factor.
-
Given that is a factor of , find the other factor.
- Simplify
- Which of the following number line represents the inequality ?
- Form an inequality for a distance metres which is more than 18m but not more than 23m.
- or
- Find the equation whose roots are -8 and 5.
- Make the subject of the formula
- Solve the equation
- or
- or
- or
- or
- Find the value of such that the expression equals zero
- Given that varies directly as while varies inversely as , which statement is true?
- varies directly as
- varies inversely as
- varies directly as
- varies inversely as
- In the diagram, PQS is a circle with center O. RST is a tangent at S and . Find .
- A bicycle wheel of radius 42 cm is rolled over a distance of 66 metres. How many revolutions does it make? ()
- 2.5
- 5
- 25
- 50
- The height of a pyramid on a square base is 15cm. If the volume is 80cm³, find the area of the square base.
- 8cm²
- 9.6cm²
- 16cm²
- 25cm²
- A tap leaks at the rate of 2cm³ per second. How long will it take to fill a container of 45 litres capacity? (1 litre = 1000 cm³)
- 8 hours
- 6 hours 15min
- 4 hrs 25min
- 3hrs
- The lengths of the parallel sides of a trapezium are 5cm and 7cm. If its area is 120cm², find the perpendicular distance between the sides.
- 5.0cm
- 6.9cm
- 10.0cm
- 20.0cm
- The arc of a circle 50cm long subtends an angle of 75° at the center of the circle. Find, correct to 3 significant figures, the radius of the circle. [].
- 8.74cm
- 38.2cm
- 61.2cm
- 76.4cm
- In the diagram, |PQ| = |PS| and |RQ| = |RS|. Which statement is true?
- |PO| = |RO|
- OR ∥ PS
- The area of a circle is 38.5cm². Find its diameter ().
- 22cm
- 14cm
- 7cm
- 6cm
- Find the volume (in cm³) of the solid.
- 100 cm³
- 150cm³
- 175cm³
- 250cm³
- Solve the equation
- , -3
- 2, 3
- -2, 3
- , 3
- If the simple interest on ₦2,000 after 9 months is ₦60, at what rate per annum is the interest charged?
- 2%
- 4%
- 5%
- 6%
Theory
Section A
- Question 1
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 2
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 3
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 4
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 5
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
Section B
- Question 6
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 7
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 8
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 9
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 10
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 11
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 12
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a
- Question 13
- Sub-question a
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question b
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question c
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question d
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question e
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question f
- Sub-question i
- Sub-question ii
- Sub-question iii
- Sub-question iv
- Sub-question v
- Sub-question a