2011 General Mathematics WAEC SSCE (School Candidates) May/June: Difference between revisions

From WikiQuestions
mNo edit summary
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{PageUnderConstruction}}
{{Questions Welcome & Disclaimer|Name=WAEC Math 2011 May/June paper|ImageName=waec_wikiquestions.png}}
=== Objective Test Questions ===
=== Objective Test Questions ===
<ol>
<ol>
Line 18: Line 18:
         </ol>
         </ol>
     </li>
     </li>
     <li>Given that ''cos x°'' = <math>\tfrac{1}{r}</math><sub>’</sub> express tan ''x°'' in terms of ''r.''[[File:2011 MATH P1Q003.jpg|left|thumb|142x142px]]
     <li>Given that ''cos x°'' = <math>\tfrac{1}{r}</math><sub>’</sub> express tan ''x°'' in terms of ''r.''[[File:2011 MATH P1Q003.jpg|thumb|116x116px|center]]<ol type="a">
 
 
 
 
 
<ol type="a">
             <li><math>\tfrac{1}{\sqrt{r}}</math></li>
             <li><math>\tfrac{1}{\sqrt{r}}</math></li>
             <li><math>\sqrt{r}</math></li>
             <li><math>\sqrt{r}</math></li>
Line 31: Line 25:
         </ol>
         </ol>
     </li>
     </li>
     <li>The diagram shows a cyclic quadrilateral PQRS with its diagonals intersecting at K. Which of the following triangles is similar to triangle QKR?[[File:2011 MATH P1Q004.jpg|left|thumb|171x171px]]
     <li>The diagram shows a cyclic quadrilateral PQRS with its diagonals intersecting at K. Which of the following triangles is similar to triangle QKR?[[File:2011 MATH P1Q004.jpg|thumb|123x123px|center]]<ol type="a">
 
 
 
 
 
 
 
 
<ol type="a">
             <li>△ PQK</li>
             <li>△ PQK</li>
             <li>△PKS</li>
             <li>△PKS</li>
Line 47: Line 32:
         </ol>
         </ol>
     </li>
     </li>
     <li>In the diagram, OP and OR are radii, |PQ| =|QR| and reflex ᐸPOR is 240°. Calculate the value of ''x''.[[File:WA2011 MATH P1Q005.jpg|left|thumb|156x156px]]
     <li>In the diagram, OP and OR are radii, |PQ| =|QR| and reflex <math>\angle</math>POR is 240°. Calculate the value of ''x''.[[File:WA2011 MATH P1Q005.jpg|thumb|126x126px|center]]<ol type="a">
 
 
 
 
 
<ol type="a">
             <li>60°</li>
             <li>60°</li>
             <li>55°</li>
             <li>55°</li>
Line 87: Line 66:
     <li>A cylindrical container has a base radius of 14''cm'' and height 18''cm''. How many litres, correct to the nearest litre, of liquid can it hold?
     <li>A cylindrical container has a base radius of 14''cm'' and height 18''cm''. How many litres, correct to the nearest litre, of liquid can it hold?


[Take π = <math>\tfrac{22}{7}</math> ][[File:WA2011 MATH P1Q009.jpg|left|thumb|188x188px]]
[Take π = <math>\tfrac{22}{7}</math> ][[File:WA2011 MATH P1Q009.jpg|thumb|153x153px|center]]<ol type="a">
 
 
 
 
 
        <ol type="a">
             <li>11</li>
             <li>11</li>
             <li>14</li>
             <li>14</li>
Line 100: Line 73:
         </ol>
         </ol>
     </li>
     </li>
     <li>Find the size of the angle marked ''x'' in the diagram.[[File:WA2011 MATH P1Q010.jpg|left|thumb|227x227px]]<ol type="a">
     <li>Find the size of the angle marked ''x'' in the diagram.[[File:WA2011 MATH P1Q010.jpg|thumb|183x183px|center]]<ol type="a">
             <li>108°</li>
             <li>108°</li>
             <li>112°</li>
             <li>112°</li>
Line 115: Line 88:
         </ol>
         </ol>
     </li>
     </li>
     <li>Esther was facing S 20° W. She turned 90° in the clockwise direction. What direction is she facing?[[File:WA2011 MATH P1Q012.jpg|left|thumb|195x195px]]<ol type="a">
     <li>Esther was facing S 20° W. She turned 90° in the clockwise direction. What direction is she facing?[[File:WA2011 MATH P1Q012.jpg|thumb|195x195px|center]]<ol type="a">
             <li>N 70° W</li>
             <li>N 70° W</li>
             <li>S 70° W</li>
             <li>S 70° W</li>
Line 194: Line 167:
             <li>1.80''m''</li> </ol>
             <li>1.80''m''</li> </ol>
     </li>
     </li>
     <li>Question 23
     <li>In the diagram MN//OP, <math>\angle</math>NMQ = 65° and <math>\angle</math>QOP = 125°. What is the size of <math>\angle</math>MQR?[[File:WA2011 MATH P1Q023.jpg|center|thumb]]<ol type="a">
        <ol type="a">
             <li>110°</li>
             <li>Option a</li>
             <li>120°</li>
             <li>Option b</li>
             <li>130°</li>
             <li>Option c</li>
             <li>160°</li> </ol>
             <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 24
     <li>A circle is divide into two sectors in the ratio 3:7. If the radius of the circle is 7 ''cm'', calculate the length of the minor arc of the circle.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>18.85 ''cm''</li>
             <li>Option b</li>
             <li>13.20 ''cm''</li>
             <li>Option c</li>
             <li>12.30 ''cm''</li>
             <li>Option d</li>
             <li>11.30 ''cm''[[File:WA2011 MATH P1Q025&026.jpg|center|thumb]]''Use the cumulative frequency curve to answer  questions'' '''25''' ''and'' '''26'''.</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 25
     <li>Estimate the median of the data represented on the graph.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>35.5</li>
             <li>Option b</li>
             <li>36.5</li>
             <li>Option c</li>
             <li>37.5</li>
             <li>Option d</li>
             <li>38.5</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 26
     <li>What is the 80th percentile?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>45.5</li>
             <li>Option b</li>
             <li>46.5</li>
             <li>Option c</li>
             <li>47.5</li>
             <li>Option d</li>
             <li>48.5</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 27
     <li>From the diagram which of the following statements are '''true'''?  I. ''m = q''    II. ''n = q''    III. ''n + p'' = 180°  IV. ''p + m'' =180°[[File:WA2011 MATH P1Q027.jpg|center|thumb]]<ol type="a">
        <ol type="a">
             <li>I and III</li>
             <li>Option a</li>
             <li>I and IV</li>
             <li>Option b</li>
             <li>II and III</li>
             <li>Option c</li>
             <li>II and IV</li> </ol>
             <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 28
     <li>Factorize the expression ''am + bn − an − bm''.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>(a − b)(m + n)</li>
             <li>Option b</li>
             <li>(a − b)(m − n)</li>
             <li>Option c</li>
             <li>(a + b)(m − n)</li>
             <li>Option d</li>
             <li>(a + b)(m + n)[[File:WA2011 MATH P1Q029&030.jpg|center|thumb]]''The graph represents the relation y = x² − 3x − 3. Use it to answer questions'' '''29''' ''and''  '''30.'''</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 29
     <li>Find the values of ''x'' for which ''x² − 3x = 7''
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>−1.55, 4.55</li>
             <li>Option b</li>
             <li>1.55, −4.55</li>
             <li>Option c</li>
             <li>−1.55, −4.55</li>
             <li>Option d</li>
             <li>1.55, 4.55</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 30
     <li>What is the equation of the line of symmetry of the graph?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>''x'' = 0.5</li>
             <li>Option b</li>
             <li>''x'' = 1.0</li>
             <li>Option c</li>
             <li>''x'' = 1.5</li>
             <li>Option d</li>
             <li>''x'' = 4.5</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 31
     <li>Simplify <math>\tfrac{m}{n}+\tfrac{\bigl(m-1\bigr)}{5n}-\tfrac{\bigl(m-2\bigr)}{10n}</math> where n ≠ 0
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\tfrac{m-3}{10n}</math></li>
             <li>Option b</li>
             <li><math>\tfrac{11m}{10n}</math></li>
             <li>Option c</li>
             <li><math>\tfrac{m+1}{10n}</math></li>
             <li>Option d</li>
             <li><math>\tfrac{11m+4}{10n}</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 32
     <li>If <math>\sqrt{72}+\sqrt{32}-3\sqrt{18}=x\sqrt{8}</math> , find the value of ''x''.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>1</li>
             <li>Option b</li>
             <li><math>\tfrac{3}{4}</math></li>
             <li>Option c</li>
             <li><math>\tfrac{1}{2}</math></li>
             <li>Option d</li>
             <li><math>\tfrac{1}{4}</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 33
     <li>''G'' varies directly as the square of ''H.'' If ''G'' is 4 when ''H'' is 3, find ''H''  when ''G'' = 100.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>15</li>
             <li>Option b</li>
             <li>25</li>
             <li>Option c</li>
             <li>75</li>
             <li>Option d</li>
             <li>225</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 34
     <li>Given that n(P) = 19, n(P<math>\cup</math>Q) =38 and n(P<math>\cap</math>Q) = 7, find n(Q).
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>26</li>
             <li>Option b</li>
             <li>31</li>
             <li>Option c</li>
             <li>36</li>
             <li>Option d</li>
             <li>50</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 35
     <li>What must be added to (2x − 3y) to get (x − 2y)?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>5y − x</li>
             <li>Option b</li>
             <li>y − x</li>
             <li>Option c</li>
             <li>x − 5x</li>
             <li>Option d</li>
             <li>x − y</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 36
     <li>Simplify <math>1\tfrac{3}{4}-\bigl(2\tfrac{1}{3}+4\bigr)</math>
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>3\tfrac{5}{12}</math></li>
             <li>Option b</li>
             <li><math>2\tfrac{7}{12}</math></li>
             <li>Option c</li>
             <li><math>-4\tfrac{7}{12}</math></li>
             <li>Option d</li>
             <li><math>-5\tfrac{5}{12}</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 37
     <li>In the diagram, STUV is a straight line. <math>\angle</math>TSY = <math>\angle</math>UXY = 40° and <math>\angle</math>VUW = 110°. Calculate <math>\angle</math>TYW.[[File:WA2011 MATH P1Q037.jpg|center|thumb]]<ol type="a">
        <ol type="a">
             <li>150°</li>
             <li>Option a</li>
             <li>140°</li>
             <li>Option b</li>
             <li>130°</li>
             <li>Option c</li>
             <li>120°</li> </ol>
             <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 38
     <li>Given that 124<sub>''x''</sub> = 7(14<sub>''x''</sub>), find the value of ''x.''
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>12</li>
             <li>Option b</li>
             <li>11</li>
             <li>Option c</li>
             <li>9</li>
             <li>Option d</li>
             <li>8</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 39
     <li>Find the smaller value of x that satisfies the equation: ''x²'' + 7''x'' + 10 = 0
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>−5</li>
             <li>Option b</li>
             <li>−2</li>
             <li>Option c</li>
             <li>2</li>
             <li>Option d</li>
             <li>5</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 40
     <li>The perpendicular bisectors of the sides of an acute-angled triangle are drawn. Which of these statements is '''correct'''? They intersect:
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>on one of the vertices</li>
             <li>Option b</li>
             <li>at a midpoint of a side</li>
             <li>Option c</li>
             <li>inside the triangle</li>
             <li>Option d</li>
             <li>outside the triangle</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 41
     <li>A rectangular garden measures 18.6 ''m'' by 12.5 ''m''. Calculate correct to three significant figures, the area of the garden.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>230 ''m²''</li>
             <li>Option b</li>
             <li>321 ''m²''</li>
             <li>Option c</li>
             <li>232 ''m²''</li>
             <li>Option d</li>
             <li>233 ''m²''</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 42
     <li>John pours 96 litres of red oil into a rectangular container with length 220 ''cm'' and breadth 40 ''cm''. Calculate, correct to the nearest ''cm'', the height of the oil in the container.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>11 ''cm''</li>
             <li>Option b</li>
             <li>18 ''cm''</li>
             <li>Option c</li>
             <li>21 ''cm''</li>
             <li>Option d</li>
             <li>34 ''cm''</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 43
     <li>In a quiz competition, a student answers n questions correctly and was given D(n + 50) for each questions correctly answered. If he gets D600.00 altogether, how many questions did he answer '''correctly'''?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>18</li>
             <li>Option b</li>
             <li>15</li>
             <li>Option c</li>
             <li>12</li>
             <li>Option d</li>
             <li>10</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 44
     <li>The Venn diagram shows the number of students in a class who like reading (R), dancing (D) and swimming (S). How many students like dancing and swimming?[[File:WA2011 MATH P1Q044.jpg|center|thumb|253x253px]]<ol type="a">
        <ol type="a">
             <li>7</li>
             <li>Option a</li>
             <li>9</li>
             <li>Option b</li>
             <li>11</li>
             <li>Option c</li>
             <li>13</li> </ol>
             <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 45
     <li>A shopkeeper allows a discount of 15% on the marked price of a mobile phone. If a customer paid GH¢170.00 for a mobile phone, what was the marked price of the phone?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>GH¢144.50</li>
             <li>Option b</li>
             <li>GH¢195.40</li>
             <li>Option c</li>
             <li>GH¢200.00</li>
             <li>Option d</li>
             <li>GH¢225.00</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 46
     <li>If 27<sup>''x''</sup> = 9<sup>''y''</sup>'','' find the value of <math>\tfrac{x}{y}</math>
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\tfrac{1}{3}</math></li>
             <li>Option b</li>
             <li><math>\tfrac{2}{3}</math></li>
             <li>Option c</li>
             <li><math>1\tfrac{1}{2}</math></li>
             <li>Option d</li>
             <li>3</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 47
     <li>In the diagram, PQ//TS, PR//TU, reflex angle QPS = 245°, angle PŜT = 115°, <math>\angle</math>STU = 65° and <math>\angle</math>RPS = ''x''. Find the value of ''x''.[[File:WA2011 MATH P1Q047.jpg|center|thumb|250x250px]]<ol type="a">
        <ol type="a">
             <li>80°</li>
            <li>Option a</li>
             <li>70°</li>
            <li>Option b</li>
             <li>60°</li>
            <li>Option c</li>
             <li>50°</li> </ol>
            <li>Option d</li>
        </ol>
    </li>
    <li>Question 48
        <ol type="a">
             <li>Option a</li>
             <li>Option b</li>
             <li>Option c</li>
             <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 49
     <li>Illustrate the inequality -1< 3x + 5 < 14 on a number line.[[File:WA2011 MATH P1Q048.jpg|thumb|252x252px|center]] </li>
    <li>A boy looks through a window of a building and sees a mango fruit on the ground 50 m away from the foot of the building. If the window is 9 m from the ground, calculate, correct to the nearest degree, the angle of depression of the mango from the window.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li></li>
             <li>Option b</li>
             <li>10°</li>
             <li>Option c</li>
             <li>11°</li>
             <li>Option d</li>
             <li>12°</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 50
     <li>If <math>E=\tfrac{MN}{S+N}</math> and E = 75, M = 120, N = 5000, find S.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>1000</li>
             <li>Option b</li>
             <li>2000</li>
             <li>Option c</li>
             <li>3000</li>
             <li>Option d</li>
             <li>4000</li> </ol>
        </ol>
     </li>
     </li>
</ol>
</ol>
Line 423: Line 357:
==== Section A ====
==== Section A ====
<ol>
<ol>
     <li>Question 1
     <li><ol type="a">
        <ol type="a">
             <li>Simplify:  <math>\tfrac{\tfrac{1}{2}of\tfrac{1}{4}\div\tfrac{1}{3}}{\tfrac{1}{6}-\tfrac{3}{4}+\tfrac{1}{2}}</math> </li>
             <li>Sub-question a
             <li>Given that <math>\sqrt{x}</math> = 10<sup>1.6741</sup>, without using calculators, find the value of ''x''. </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 2
     <li><ol type="a">
        <ol type="a">
             <li>Make q the subject of the relation <math>t=\sqrt{\tfrac{pq}{r}-r^2q}</math> </li>
             <li>Sub-question a
             <li>If  <math>9^{1-x}=27^y  </math> and <math>x-y=-1\tfrac{1}{2}</math>, find the value of ''x'' + ''y'' </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 3
     <li>A sector of a circle with radius 21 ''cm'' has an area of 280 ''cm²''.
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>Calculate, correct to 1 decimal place, the perimeter of the sector. </li>
                <ol type="i">
             <li>If the sector is bent such that its straight edges coincide to form a cone, calculate, correct to the nearest degree, the vertical angle of the cone.    [Take π = <math>\tfrac{22}{7}</math>] </li> </ol>
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 4
     <li>[[File:WA2011 MATH P2004OA.jpg|center|thumb|278x278px]]<ol type="a">
        <ol type="a">
             <li>In the diagram, PQRST is a quadrilateral. PT//QS, <math>\ang</math>PTQ = 42°, <math>\ang</math>TSQ = 38° and <math>\ang</math>QSR = 30°. If <math>\ang</math>QTS = x and <math>\ang</math>PQT = y, find:
             <li>Sub-question a
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>x;</li>
                     <li>Sub-question ii</li>
                     <li>y[[File:WA2011 MATH P2004OB.jpg|center|thumb|230x230px]]
                    <li>Sub-question iii</li>
</li> </ol>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
             </li>
        </ol>
            <li>In the diagram, PQRS is a circle centre O. If PÔQ = 150°, <math>\ang</math>QSR = 40° and <math>\ang</math>SQP = 45°. Calculate <math>\ang</math>RQS. </li> </ol>
     </li>
     </li>
     <li>Question 5
     <li>A library received a $1,300 grant. It spends 10% of the grant on magazine subscriptions, 35% on new books, 15% to repair damaged books, 30% to buy new furniture and 10% to train library staff.
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>Represent this information on a pie chart </li>
                <ol type="i">
             <li>Calculate, correct to the nearest whole number, the percentage increase of the amount for buying new books over that of new furniture. </li> </ol>
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
</ol>
</ol>
Line 717: Line 388:
==== Section B ====
==== Section B ====
<ol start=6>
<ol start=6>
     <li>Question 6
     <li>In a class of 40 students, 18 passed Mathematics, 19 passed Accounts, 16 passed Economics, 5 Mathematics and Accounts only, 6 Mathematics only, 9 Accounts only, 2 Accounts and Economics only. If each student offered '''at least''' one of the subjects;
        <ol type="a">
            <li>Sub-question a
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
    </li>
    <li>Question 7
        <ol type="a">
            <li>Sub-question a
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
    </li>
    <li>Question 8
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>How many students failed in all the subjects? </li>
                <ol type="i">
             <li>Find the percentage number who failed in '''at least''' one of Economics and Mathematics; </li>
                    <li>Sub-question i</li>
             <li>Calculate the probability that a student at random '''failed''' in Accounts. </li> </ol>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 9
     <li><ol type="a">
        <ol type="a">
             <li>Divide <math>\tfrac{x^2-4}{x^2+4}</math>   by  <math>\tfrac{x^2-4x+4}{x+1}</math> </li>
             <li>Sub-question a
             <li>[[File:WA2011 MATH P2Q007OB.jpg|center|thumb]]The diagram shows the graphs of y = ax² + bx + c and y = mx + k where a, b, c, m and k are constants. Use the graph(s) to:
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>Find the roots of the equation ax² + bx + c = mx + k;</li>
                     <li>Sub-question ii</li>
                     <li>Determine the values of a, b and c using the coordinates of points '''L, M''' and '''N,''' hence write down the equation of the curve;</li>
                     <li>Sub-question iii</li>
                     <li>Determine the line of symmetry of the curve y = ax² + bx + c.</li> </ol>
                    <li>Sub-question iv</li>
             </li> </ol>
                    <li>Sub-question v</li>
                </ol>
             </li>
        </ol>
     </li>
     </li>
     <li>Question 10
     <li><ol type="a">
        <ol type="a">
             <li>Given that ''sin x'' = 0.6 and 0°≤''x≤''90°, evaluate 2 ''cos x'' + 3 ''sin x'', leaving your answer in the form <math>\tfrac{m}{n}</math> where ''m'' and ''n'' are integers. </li>
             <li>Sub-question a
            <li>[[File:WA2011 MATH P2Q008OB.jpg|center|thumb]]In the diagram, a semi circle WXYZ with centre O is inscribed in an isosceles triangle ABC. If /AC/ = /BC/, /OC/ = 30 cm and AĈB = 130°. Calculate, correct to one decimal place,
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>radius of the circle;</li>
                     <li>Sub-question ii</li>
                     <li>area of the shaded portion.                      [Take π = <math>\tfrac{22}{7}</math>]</li> </ol>
                    <li>Sub-question iii</li>
             </li> </ol>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 11
     <li>Using ruler and a pair of compasses only,
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>construct a rhombus PQRS of side 7 cm and <math>\ang</math>PQR = 60°; </li>
                <ol type="i">
             <li>locate point X lies on the locus of points equidistant from PQ and QR and also equidistant from Q and R; </li>
                    <li>Sub-question i</li>
             <li>Measure /XR/. </li> </ol>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 12
     <li><ol type="a">
        <ol type="a">
             <li>The total surface area of two spheres are in the ratio 9:49. If the radius of the smaller sphere is 12 ''cm'', find, correct to the nearest ''cm³,'' the volume of the bigger sphere. </li>
             <li>Sub-question a
             <li>A cyclist starts from a point X and rides 3 ''km'' due West to a point Y. At Y, he changes direction and rides 5 ''km'' North-West to a point Z
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>How far is he from the starting point. Correct to the nearest ''km''?</li>
                     <li>Sub-question ii</li>
                     <li>Find the bearing of Z from X, to the nearest degree.</li> </ol>
                    <li>Sub-question iii</li>
             </li> </ol>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
        </ol>
     </li>
     </li>
     <li>Question 13
     <li>The table shows the scores obtained when a fair die was thrown a number of times. If the probability of obtaining a 3 is 0.26, find the;
        <ol type="a">
{| class="wikitable"
            <li>Sub-question a
|-
                <ol type="i">
| Score || 1 || 2 || 3 || 4 || 5 || 6
                    <li>Sub-question i</li>
|-
                    <li>Sub-question ii</li>
| Frequency || 2 || 5 || x || 11 || 9 || 10
                    <li>Sub-question iii</li>
|}
                    <li>Sub-question iv</li>
<ol type="a">
                    <li>Sub-question v</li>
            <li>median; </li>
                </ol>
            <li>standard deviation of the distribution. </li> </ol>
            </li>
    </li><li><ol type="a">
            <li>Sub-question b
            <li>The area of trapezium PQRS is 60 ''cm².'' PQ//RS, /PQ/ = 15 ''cm'', /RS/ = 25 ''cm'' and <math>\ang</math>PSR = 30°. Calculate the:
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>perpendicular height of PQRS;</li>
                     <li>Sub-question ii</li>
                     <li>/PS/</li> </ol>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
             </li>
             <li>Sub-question d
             <li>Ade received <math>\tfrac{3}{5}</math> of a sum of money, Nelly <math>\tfrac{1}{3}</math> of the remainder while Austin took the rest. If Austin's share is greater than Nelly's share by ₦3,000, how much did Ade receive? </li> </ol>
    </li><li><ol type="a">
        <li>''P'' varies directly as ''Q'' and inversely as the square of ''R''. If ''P'' = 1 when ''Q'' = 8 and ''R'' = 2, find the value of ''Q'' when ''P'' = 3 and ''R'' = 5 </li><li>An aeroplane flies from town A(20°N, 60°E) to town B(20°N, 20°E).
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>If the journey takes 6 hours, calculate, correct to 3 significant figures, the average speed of the aeroplane.</li>
                     <li>Sub-question ii</li>
                     <li>If it then flies due North from town B to town C, 420 km away. Calculate, correct to the nearest degree, the latitude of town C.
                    <li>Sub-question iii</li>
[Take radius of the earth = 6400 km and π = 3.142].</li> </ol>
                    <li>Sub-question iv</li>
</li> </ol>
                    <li>Sub-question v</li>
'''QUESTIONS 14 AND 15 ARE FOR CANDIDATES IN GHANA, SIERRA LEONE AND THE GAMBIA ONLY.'''
                </ol>
</li><li><ol type="a">
            </li>
        <li>Using a scale of 2 ''cm'' to 2 units on both axes, draw on a graph sheet, two perpendicular axes OX and OY for the interval -8≤x≤8 and -8≤y≤8.</li><li>Draw clearly and label the vertices as appropriate:
            <li>Sub-question e
      <ol type="i">
                <ol type="i">
          <li>rectangular PQR with P(1,2), Q(5,3) and <math>\overrightarrow{R Q}=\binom{2}{-3}</math>;  </li>
                    <li>Sub-question i</li>
          <li>the image △P'Q'R' of △PQR under a rotation of 180° about the origin where P → P', Q → Q' and R → R'.</li><li>the image of △P"Q"R" of △P'Q'R' under a reflection in the line x = 0 where P' → P", Q' → Q" and R' → R"
                    <li>Sub-question ii</li>
</li> </ol>
                    <li>Sub-question iii</li>
        </li>
                    <li>Sub-question iv</li>
        <li>Describe fully a single transformation that maps</li> </ol>
                    <li>Sub-question v</li>
</li><li><ol type="a">
                </ol>
        <li>Find the image of (-2, 4) under the mapping <math>\binom{x}{y}\rightarrow\binom{2x}{y-3x}</math>. </li><li>Two functions ''f'' and ''g'' are defined as: <math>f:x\rightarrow\tfrac{x^2}{4}-9</math>             <math>g:x\rightarrow\tfrac{1}{2x}(x\neq0)</math>
            </li>
      <ol type="i">
            <li>Sub-question f
        <li>Evaluate:  <math>f(4) + g\bigl(-\tfrac{1}{3}\bigr)</math> </li>
                <ol type="i">
         <li>If ''f'' x ''g'' = 2, solve for ''x''.</li> </ol>
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
         </ol>
    </li>
</ol>
[[Category:WAEC General Mathematics]]
[[Category:WAEC General Mathematics]]

Latest revision as of 07:50, 2 September 2024

Today, we're excited to share the WAEC Math 2011 May/June paper. This is WikiQuestions.org, your ultimate destination for free past exam papers. We aim to help you excel in your studies by offering accurate and reliable resources. We are committed to providing students access to a comprehensive collection of past papers to support their exam preparation.

Disclaimer

At WikiQuestions.org, we strive to ensure the accuracy and reliability of the exam papers we provide. However, neither WikiQuestions.org, its parent organization, nor any of the volunteer contributors can be held liable for any errors, omissions, or inaccuracies in the content. Users are encouraged to verify the information with official sources. We are in no way affiliated with the examining body; the questions have been contributed and maintained by various volunteers.

Objective Test Questions

  1. If ₦112.00 exchanges for D14.94. Calculate the value of D1.00 in naira
    1. 0.13
    2. 7.49
    3. 8.00
    4. 13.00
  2. Solve for x in the equation =
    1. 0
    2. 1
    3. 2
    4. 3
  3. Given that cos x° = express tan in terms of r.
  4. The diagram shows a cyclic quadrilateral PQRS with its diagonals intersecting at K. Which of the following triangles is similar to triangle QKR?
    1. △ PQK
    2. △PKS
    3. △SKR
    4. △PSR
  5. In the diagram, OP and OR are radii, |PQ| =|QR| and reflex POR is 240°. Calculate the value of x.
    1. 60°
    2. 55°
    3. 50°
    4. 45°
  6. If a number is chosen at random from the set (x: 4≤x≤15), find the probability that it is a multiple of 3 or a multiple of 4.
  7. Solve the equations:
    1. x = 1, y = -2
    2. x = 1, y = 3
    3. x = 2, y = -1
    4. x = 4, y = -3
  8. One of the factors of (mn − nq − n² + mq) is (m − n). The other factor is:
    1. (n − q)
    2. (q − n)
    3. (n + q)
    4. (q − m)
  9. A cylindrical container has a base radius of 14cm and height 18cm. How many litres, correct to the nearest litre, of liquid can it hold? [Take π = ]
    1. 11
    2. 14
    3. 16
    4. 18
  10. Find the size of the angle marked x in the diagram.
    1. 108°
    2. 112°
    3. 128°
    4. 142°
  11. A regular polygon of a n sides has each exterior angle equal to 45°. Find the value of n.
    1. 6
    2. 8
    3. 12
    4. 15
  12. Esther was facing S 20° W. She turned 90° in the clockwise direction. What direction is she facing?
    1. N 70° W
    2. S 70° W
    3. N 20° W
    4. S 20° E
      The histogram shows the age distribution of members of a club. Use the information to answer questions 13 and 14.
  13. How many members are in the club?
    1. 52
    2. 50
    3. 48
    4. 40
  14. What is their modal age?
    1. 44.5
    2. 42.5
    3. 41.5
    4. 40.5
  15. The cross section of a uniform prism is a right-angled triangle with sides 3, 4 and 5 cm. If its length is 10 cm, calculate the total surface area.
    1. 142 cm²
    2. 132 cm²
    3. 122 cm²
    4. 112 cm²
  16. Form the equation whose roots are x = and −.
    1. 6x² − x + 2 = 0
    2. 6x² − x − 2 = 0
    3. 6x² + x + 2 = 0
    4. 6x² + x − 2 = 0
  17. Simplify: .
    1. 3
    2. 2
  18. Which of these angles can be constructed using ruler and a pair of compasses only?
    1. 115°
    2. 125°
    3. 135°
    4. 145°
  19. The perimeter of a sector of a circle of radius 4 cm is ( π + 8) cm. Calculate the angle of the sector.
    1. 45°
    2. 60°
    3. 75°
    4. 90°
  20. The length of a piece of stick is 1.75 m. A girl measured it as 1.80 m. Find the percentage error.
    1. %
    2. %
    3. 5%
    4. %
  21. What is the value of 3 in the number 42.7531?
  22. The height of a cylinder is equal to its radius. If the volume is 0.216πm³, calculate the radius.
    1. 0.46m
    2. 0.60m
    3. 0.87m
    4. 1.80m
  23. In the diagram MN//OP, NMQ = 65° and QOP = 125°. What is the size of MQR?
    1. 110°
    2. 120°
    3. 130°
    4. 160°
  24. A circle is divide into two sectors in the ratio 3:7. If the radius of the circle is 7 cm, calculate the length of the minor arc of the circle.
    1. 18.85 cm
    2. 13.20 cm
    3. 12.30 cm
    4. 11.30 cm
      Use the cumulative frequency curve to answer questions 25 and 26.
  25. Estimate the median of the data represented on the graph.
    1. 35.5
    2. 36.5
    3. 37.5
    4. 38.5
  26. What is the 80th percentile?
    1. 45.5
    2. 46.5
    3. 47.5
    4. 48.5
  27. From the diagram which of the following statements are true? I. m = q II. n = q III. n + p = 180° IV. p + m =180°
    1. I and III
    2. I and IV
    3. II and III
    4. II and IV
  28. Factorize the expression am + bn − an − bm.
    1. (a − b)(m + n)
    2. (a − b)(m − n)
    3. (a + b)(m − n)
    4. (a + b)(m + n)
      The graph represents the relation y = x² − 3x − 3. Use it to answer questions 29 and 30.
  29. Find the values of x for which x² − 3x = 7
    1. −1.55, 4.55
    2. 1.55, −4.55
    3. −1.55, −4.55
    4. 1.55, 4.55
  30. What is the equation of the line of symmetry of the graph?
    1. x = 0.5
    2. x = 1.0
    3. x = 1.5
    4. x = 4.5
  31. Simplify where n ≠ 0
  32. If , find the value of x.
    1. 1
  33. G varies directly as the square of H. If G is 4 when H is 3, find H when G = 100.
    1. 15
    2. 25
    3. 75
    4. 225
  34. Given that n(P) = 19, n(PQ) =38 and n(PQ) = 7, find n(Q).
    1. 26
    2. 31
    3. 36
    4. 50
  35. What must be added to (2x − 3y) to get (x − 2y)?
    1. 5y − x
    2. y − x
    3. x − 5x
    4. x − y
  36. Simplify
  37. In the diagram, STUV is a straight line. TSY = UXY = 40° and VUW = 110°. Calculate TYW.
    1. 150°
    2. 140°
    3. 130°
    4. 120°
  38. Given that 124x = 7(14x), find the value of x.
    1. 12
    2. 11
    3. 9
    4. 8
  39. Find the smaller value of x that satisfies the equation: + 7x + 10 = 0
    1. −5
    2. −2
    3. 2
    4. 5
  40. The perpendicular bisectors of the sides of an acute-angled triangle are drawn. Which of these statements is correct? They intersect:
    1. on one of the vertices
    2. at a midpoint of a side
    3. inside the triangle
    4. outside the triangle
  41. A rectangular garden measures 18.6 m by 12.5 m. Calculate correct to three significant figures, the area of the garden.
    1. 230
    2. 321
    3. 232
    4. 233
  42. John pours 96 litres of red oil into a rectangular container with length 220 cm and breadth 40 cm. Calculate, correct to the nearest cm, the height of the oil in the container.
    1. 11 cm
    2. 18 cm
    3. 21 cm
    4. 34 cm
  43. In a quiz competition, a student answers n questions correctly and was given D(n + 50) for each questions correctly answered. If he gets D600.00 altogether, how many questions did he answer correctly?
    1. 18
    2. 15
    3. 12
    4. 10
  44. The Venn diagram shows the number of students in a class who like reading (R), dancing (D) and swimming (S). How many students like dancing and swimming?
    1. 7
    2. 9
    3. 11
    4. 13
  45. A shopkeeper allows a discount of 15% on the marked price of a mobile phone. If a customer paid GH¢170.00 for a mobile phone, what was the marked price of the phone?
    1. GH¢144.50
    2. GH¢195.40
    3. GH¢200.00
    4. GH¢225.00
  46. If 27x = 9y, find the value of
    1. 3
  47. In the diagram, PQ//TS, PR//TU, reflex angle QPS = 245°, angle PŜT = 115°, STU = 65° and RPS = x. Find the value of x.
    1. 80°
    2. 70°
    3. 60°
    4. 50°
  48. Illustrate the inequality -1< 3x + 5 < 14 on a number line.
  49. A boy looks through a window of a building and sees a mango fruit on the ground 50 m away from the foot of the building. If the window is 9 m from the ground, calculate, correct to the nearest degree, the angle of depression of the mango from the window.
    1. 10°
    2. 11°
    3. 12°
  50. If and E = 75, M = 120, N = 5000, find S.
    1. 1000
    2. 2000
    3. 3000
    4. 4000

Theory

Section A

    1. Simplify:
    2. Given that = 101.6741, without using calculators, find the value of x.
    1. Make q the subject of the relation
    2. If and , find the value of x + y
  1. A sector of a circle with radius 21 cm has an area of 280 cm².
    1. Calculate, correct to 1 decimal place, the perimeter of the sector.
    2. If the sector is bent such that its straight edges coincide to form a cone, calculate, correct to the nearest degree, the vertical angle of the cone. [Take π = ]
    1. In the diagram, PQRST is a quadrilateral. PT//QS, PTQ = 42°, TSQ = 38° and QSR = 30°. If QTS = x and PQT = y, find:
      1. x;
      2. y
    2. In the diagram, PQRS is a circle centre O. If PÔQ = 150°, QSR = 40° and SQP = 45°. Calculate RQS.
  2. A library received a $1,300 grant. It spends 10% of the grant on magazine subscriptions, 35% on new books, 15% to repair damaged books, 30% to buy new furniture and 10% to train library staff.
    1. Represent this information on a pie chart
    2. Calculate, correct to the nearest whole number, the percentage increase of the amount for buying new books over that of new furniture.

Section B

  1. In a class of 40 students, 18 passed Mathematics, 19 passed Accounts, 16 passed Economics, 5 Mathematics and Accounts only, 6 Mathematics only, 9 Accounts only, 2 Accounts and Economics only. If each student offered at least one of the subjects;
    1. How many students failed in all the subjects?
    2. Find the percentage number who failed in at least one of Economics and Mathematics;
    3. Calculate the probability that a student at random failed in Accounts.
    1. Divide by
    2. The diagram shows the graphs of y = ax² + bx + c and y = mx + k where a, b, c, m and k are constants. Use the graph(s) to:
      1. Find the roots of the equation ax² + bx + c = mx + k;
      2. Determine the values of a, b and c using the coordinates of points L, M and N, hence write down the equation of the curve;
      3. Determine the line of symmetry of the curve y = ax² + bx + c.
    1. Given that sin x = 0.6 and 0°≤x≤90°, evaluate 2 cos x + 3 sin x, leaving your answer in the form where m and n are integers.
    2. In the diagram, a semi circle WXYZ with centre O is inscribed in an isosceles triangle ABC. If /AC/ = /BC/, /OC/ = 30 cm and AĈB = 130°. Calculate, correct to one decimal place,
      1. radius of the circle;
      2. area of the shaded portion. [Take π = ]
  2. Using ruler and a pair of compasses only,
    1. construct a rhombus PQRS of side 7 cm and PQR = 60°;
    2. locate point X lies on the locus of points equidistant from PQ and QR and also equidistant from Q and R;
    3. Measure /XR/.
    1. The total surface area of two spheres are in the ratio 9:49. If the radius of the smaller sphere is 12 cm, find, correct to the nearest cm³, the volume of the bigger sphere.
    2. A cyclist starts from a point X and rides 3 km due West to a point Y. At Y, he changes direction and rides 5 km North-West to a point Z
      1. How far is he from the starting point. Correct to the nearest km?
      2. Find the bearing of Z from X, to the nearest degree.
  3. The table shows the scores obtained when a fair die was thrown a number of times. If the probability of obtaining a 3 is 0.26, find the;
    Score 1 2 3 4 5 6
    Frequency 2 5 x 11 9 10
    1. median;
    2. standard deviation of the distribution.
    1. The area of trapezium PQRS is 60 cm². PQ//RS, /PQ/ = 15 cm, /RS/ = 25 cm and PSR = 30°. Calculate the:
      1. perpendicular height of PQRS;
      2. /PS/
    2. Ade received of a sum of money, Nelly of the remainder while Austin took the rest. If Austin's share is greater than Nelly's share by ₦3,000, how much did Ade receive?
    1. P varies directly as Q and inversely as the square of R. If P = 1 when Q = 8 and R = 2, find the value of Q when P = 3 and R = 5
    2. An aeroplane flies from town A(20°N, 60°E) to town B(20°N, 20°E).
      1. If the journey takes 6 hours, calculate, correct to 3 significant figures, the average speed of the aeroplane.
      2. If it then flies due North from town B to town C, 420 km away. Calculate, correct to the nearest degree, the latitude of town C. [Take radius of the earth = 6400 km and π = 3.142].

    QUESTIONS 14 AND 15 ARE FOR CANDIDATES IN GHANA, SIERRA LEONE AND THE GAMBIA ONLY.

    1. Using a scale of 2 cm to 2 units on both axes, draw on a graph sheet, two perpendicular axes OX and OY for the interval -8≤x≤8 and -8≤y≤8.
    2. Draw clearly and label the vertices as appropriate:
      1. rectangular PQR with P(1,2), Q(5,3) and ;
      2. the image △P'Q'R' of △PQR under a rotation of 180° about the origin where P → P', Q → Q' and R → R'.
      3. the image of △P"Q"R" of △P'Q'R' under a reflection in the line x = 0 where P' → P", Q' → Q" and R' → R"
    3. Describe fully a single transformation that maps
    1. Find the image of (-2, 4) under the mapping .
    2. Two functions f and g are defined as:
      1. Evaluate:
      2. If f x g = 2, solve for x.