2010 General Mathematics WAEC SSCE (School Candidates) May/June: Difference between revisions

From WikiQuestions
(1-25)
mNo edit summary
 
(4 intermediate revisions by the same user not shown)
Line 201: Line 201:
             <li><math>\frac{1}{2}</math></li> </ol>
             <li><math>\frac{1}{2}</math></li> </ol>
     </li>
     </li>
     <li>Question 26
     <li>If sin 3y=cos 2y and 0°<y< 90°, find the value of y.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>18°</li>
             <li>Option b</li>
             <li>36°</li>
             <li>Option c</li>
             <li>54°</li>
             <li>Option d</li>
             <li>90°</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 27
     <li>The sum of the exterior angles of an n-sided convex polygon is half the sum of its interior angles. Find n.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>6</li>
             <li>Option b</li>
             <li>8</li>
             <li>Option c</li>
             <li>9</li>
             <li>Option d</li>
             <li>12</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 28
     <li>What is the length of a rectangular garden whose perimeter is 32 cm and area 39 <math>cm^2</math>?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>25 cm</li>
             <li>Option b</li>
             <li>18 cm</li>
             <li>Option c</li>
             <li>13 cm</li>
             <li>Option d</li>
             <li>9 cm</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 29
     <li>If y= <math>\frac{2\Bigl(\sqrt{x^2+m} \Bigr)}{3N}</math>, make x the subject of the formula.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\frac{\sqrt{9y^2N^2 -2m}}{2}</math></li>
             <li>Option b</li>
             <li><math>\frac{\sqrt{9y^2N^2 +2m}}{2}</math></li>
             <li>Option c</li>
             <li><math>\frac{\sqrt{9y^2NT^2 -4m}}{2}</math></li>
             <li>Option d</li>
             <li><math>\frac{\sqrt{9y^2N^2+4m}}{2}</math></li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 30
     <li>The nth term of tHe sequence: —2, 4, — 8, 16 is given by
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>T_{n}= 2^n</math></li>
             <li>Option b</li>
             <li><math>T_{n}= \Bigl(-2\Bigr)^n</math></li>
             <li>Option c</li>
             <li><math>T_{n}= \Bigl(-2n\Bigr)</math></li>
             <li>Option d</li>
             <li><math>T_{n}= n^2</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 31
     <li>In the diagram, 0 is the centre of the circle <math>\angle</math>SQR = 60°, <math>\angle</math>SPR =y and <math>\angle</math>SOR = 3x. Find the value of (x + y).
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>110°</li>
             <li>Option b</li>
             <li>100°</li>
             <li>Option c</li>
             <li>80°</li>
             <li>Option d</li>
             <li>70°</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 32
     <li>How many times correct to XX number, will a man run round a track of diameter 100m to cover a distance of 1000 m7?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>3</li>
             <li>Option b</li>
             <li>4</li>
             <li>Option c</li>
             <li>5</li>
             <li>Option d</li>
             <li>6</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 33
     <li>[[File:WA2010 MATH P1Q033.jpg|center|thumb]]The shaded portion in the diagram is the solution
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>x+y\leq 3</math></li>
             <li>Option b</li>
             <li><math>x+y< 3 </math></li>
             <li>Option c</li>
             <li><math>x+y> 3 </math></li>
             <li>Option d</li>
             <li><math>x+y\geq 3 </math></li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 34
     <li>[[File:WA2010 MATH P1Q034.jpg|center|thumb]]In the diagram, /EF/ = 8 cm, /FG/=x cm, /GH/ = (x+2) cm, <math>\angle</math>EFC= 90°. If the area of the shaded portion is 40 <math>cm^2</math>, find the area of <math>\bigtriangleup</math>JEFG.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>128 <math>cm^2</math></li>
             <li>Option b</li>
             <li>72 <math>cm^2</math></li>
             <li>Option c</li>
             <li>64 <math>cm^2</math></li>
             <li>Option d</li>
             <li>32 <math>cm^2</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 35
     <li>In the diagram, GI is a tangent to the circle at H. EFI/GI, calculate the size of <math>\angle</math>EHF
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>126°</li>
             <li>Option b</li>
             <li>72°</li>
             <li>Option c</li>
             <li>54°</li>
             <li>Option d</li>
             <li>28°</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 36
     <li>Bala sold an article for #6,900.00 and made a profit of 15%. If he sold it for #6,600.00 he would make a:
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>profit of 13%. </li>
             <li>Option b</li>
             <li>loss of 12%.</li>
             <li>Option c</li>
             <li>profit of 10%.</li>
             <li>Option d</li>
             <li>loss of 5%.</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 37
     <li>[[File:WA2010 MATH P1Q037.jpg|center|thumb]]In the diagram above, <math>\angle</math>ROS = 66° and <math>\angle</math>POQ = 3 x. Some construction lines are shown. Calculate the value of x.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>10°</li>
             <li>Option b</li>
             <li>11°</li>
             <li>Option c</li>
             <li>22°</li>
             <li>Option d</li>
             <li>30°</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 38
     <li>The mean age of R men in a club is 50 years. Two men, aged 55 and 63, left the club and the mean age reduced by 1 year. Find the value of R.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>18</li>
             <li>Option b</li>
             <li>20</li>
             <li>Option c</li>
             <li>22</li>
             <li>Option d</li>
             <li>28</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 39
    {| class="wikitable"
|+
|x
|0
|2
|4
|6
|-
|y
|1
|2
|3
|4
|}
The table is for the relation y = mx + c where m and c are constants. Use it to answer questions
39 and 40.
 
     <li>What is the equation of the line described in the table?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>y = 2x</li>
             <li>Option b</li>
             <li>y = x+1</li>
             <li>Option c</li>
             <li>y = x</li>
             <li>Option d</li>
             <li>y=<math>\tfrac{1}{2}</math>x+1</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 40
     <li>What is the value of x when y = 5?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>8</li>
             <li>Option b</li>
             <li>9</li>
             <li>Option c</li>
             <li>10</li>
             <li>Option d</li>
             <li>11</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 41
     <li>[[File:WA2010 MATH P1Q041.jpg|center|thumb]]The diagram is a net of a right rectangular pyramid. Calculate the total surface area.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>208 <math>cm^2</math></li>
             <li>Option b</li>
             <li>112 <math>cm^2</math></li>
             <li>Option c</li>
             <li>92 <math>cm^2</math></li>
             <li>Option d</li>
             <li>76 <math>cm^2</math></li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 42
     <li>[[File:WA2010 MATH P1Q042.jpg|center|thumb]]The diagram shows a rectangular cardboard from which a semi-circle is cut off. Calculate the area of the remaining part.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>44 <math>cm^2</math></li>
             <li>Option b</li>
             <li>99 <math>cm^2</math></li>
             <li>Option c</li>
             <li>154 <math>cm^2</math></li>
             <li>Option d</li>
             <li>165 <math>cm^2</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 43
     <li>The subtraction below is in base seven. Find the missing number
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>2</li>
             <li>Option b</li>
             <li>3</li>
             <li>Option c</li>
             <li>4</li>
             <li>Option d</li>
             <li>5</li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 44
     <li>In the diagram O is the centre of the circle Find the value of x
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>34</li>
             <li>Option b</li>
             <li>29</li>
             <li>Option c</li>
             <li>17</li>
             <li>Option d</li>
             <li>14</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 45
     <li>If the sum of the roots of the equation (x — p) (2x +1) =0 is1, find the value of p.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>1\frac{1}{2}</math></li>
             <li>Option b</li>
             <li><math>\frac{1}{2}</math></li>
             <li>Option c</li>
             <li><math>-\frac{1}{2}</math></li>
             <li>Option d</li>
             <li><math>-1\frac{1}{2}</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 46
     <li>[[File:WA2010 MATH P1Q046.jpg|center|thumb]]In the diagram, <math>\angle</math>WOX = 60°,<math>\angle</math>YOE = 50° and <math>\angle</math>OXY =.30°. What is the bearing of x from Y?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li>300°</li>
             <li>Option b</li>
             <li>240°</li>
             <li>Option c</li>
             <li>190°</li>
             <li>Option d</li>
             <li>150°</li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 47
     <li>.|n an athletics competition, the probability that an athlete wins a 100 m race is <math>\frac{1}{8}</math>and the  probability that he wins in high jump is <math>\frac{1}{4}</math>. What is the probability that he wins only one of the events?
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\frac{3}{32}</math></li>
             <li>Option b</li>
             <li><math>\frac{3}{32}</math></li>
             <li>Option c</li>
             <li><math>\frac{7}{32}</math></li>
             <li>Option d</li>
             <li><math>\frac{5}{16}</math></li>
         </ol>
         </ol>
     </li>
     </li>
     <li>Question 48
     <li>If <math>x^2+kx+ \frac{16}{9}</math> is a perfect square, find the value of x
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\frac{8}{3}</math></li>
             <li>Option b</li>
             <li><math>\frac{7}{3}</math></li>
             <li>Option c</li>
             <li><math>\frac{5}{3}</math></li>
             <li>Option d</li>
             <li><math>\frac{2}{3}</math></li> </ol>
        </ol>
     </li>
     </li>
     <li>Question 49
     <li>If  <math>x kmh^-1 =y ms^ -1</math>, the y =
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>\frac{7}{18}x</math></li>
             <li>Option b</li>
             <li><math>\frac{11}{20}x</math></li>
             <li>Option c</li>
             <li><math>\frac{4}{15}x</math></li> </ol>
            <li>Option d</li>
        </ol>
     </li>
     </li>
     <li>Question 50
     <li>The mean of the numbers 2, 5, 2x and 7 is less than or equal to 5. Find the range of values. of x.
         <ol type="a">
         <ol type="a">
             <li>Option a</li>
             <li><math>x\leq 3</math></li>
             <li>Option b</li>
             <li><math>x\geq 3</math></li>
             <li>Option c</li>
             <li><math>x<3</math></li>
             <li>Option d</li>
             <li><math>x>3</math></li> </ol>
        </ol>
     </li>
     </li>
</ol>
</ol>
Line 406: Line 409:
==== Section A ====
==== Section A ====
<ol>
<ol>
     <li>Question 1
     <li><math>A= \{2,4,6,8\}</math>, <math>B= \{2,3,7,9\}</math> and <math>B= \{x:3< x <9\}</math> are subsets of the universal set <math>U= \{2,3,4,5,6,7,8,9\}</math>. Find
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li><math>A\cap \Bigl(B\cap C\Bigr)</math> </li>
                <ol type="i">
             <li><math>\Bigl( A\cup B\Bigr) \cap \Bigl(B \cup C\Bigr)</math> </li> </ol>
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 2
     <li><ol type="a">
        <ol type="a">
             <li>The angle of depression of a boat from the mid-point of a vertical cliff is 35° If the boat is 120 m from the foot of the cliff, calculate the height of the cliff. </li>
             <li>Sub-question a
             <li>)Towns P and Q are x km apart. Two motorist set out at the same time from P to Q at steady speeds of 60 km/h and 80 km/h. The faster motorist got to Q 30 minutes earlier than the other. Find the Value of x. </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 3
     <li><ol type="a">
        <ol type="a">
             <li>[[File:WA2010 MATH P2Q003OA.jpg|center|thumb]]In the diagram, <math>\angle</math>PQR =125°, <math>\angle</math>QRS=r, <math>\angle</math>RST 80° and <math>\angle</math>STU = 44°. Calculate the value of r. </li>
             <li>Sub-question a
             <li>[[File:WA2010 MATH P2Q003OB.jpg|center|thumb]]In the diagram, TS is a tangent to the circle at A. AB//CE, <math>\angle</math>AEC =5x°, <math>\angle</math>ADB = 60° and <math>\angle</math>TAE = x. Find the value of x. </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 4
     <li>[[File:WA2010 MATH P2Q004.jpg|center|thumb]]The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 <math>cm^2</math>, calculate, correct to 3 significant figures, the:
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>base radius, r; </li>
                <ol type="i">
             <li>height, h; </li>
                    <li>Sub-question i</li>
             <li>volume of the cone [ Take <math>\pi = \frac{22}{7}</math>] </li> </ol>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 5
     <li>Two fair dice are thrown. M is the event described by " the sum of the scores is 10" and N is the event described by "the difference between the scores is 3".
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>Write out the elements of M and N. </li>
                <ol type="i">
             <li>Find the probability of M or N. </li>
                    <li>Sub-question i</li>
             <li>Are M and N mutually exclusive? Give reasons. </li> </ol>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
</ol>
</ol>
Line 700: Line 438:
==== Section B ====
==== Section B ====
<ol start=6>
<ol start=6>
     <li>Question 6
     <li><ol type="a">
        <ol type="a">
             <li>The area of a map is 1:20,000. Calculate the area, in square centimetres, on the map of a forest reserve which covers 85 km². </li>
             <li>Sub-question a
             <li>A rectangular playing field is 18 m wide. It is surrounded by a path 6 m wide such that its area is equal to the area of the path. Calculate the length of the field. </li>
                <ol type="i">
             <li>[[File:WA2010 MATH P2Q006OC.jpg|center|thumb]]The diagram shows a circle centre O. If POQ = x°, the diameter of the circle is 7 cm and the area of the shaded portion is 27.5 cm². Find, correct to the nearest degree, the value of x. [Take <math>\pi = \frac{22}{7}</math>] </li> </ol>
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 7
     <li><ol type="a">
        <ol type="a">
             <li>Madam Kwakyewaa imported a quantity of frozen fish costing GH¢400.00 The goods attracted an import duty of 15% of its cost. She also paid a sales tax of 10% of the total cost of the goods including the import duty and then sold the goods for GH¢660.00. Calculate her percentage profit. </li>
             <li>Sub-question a
             <li>In a school, there are 1000 boys and a number of girls. The 48% of the total number of students that were successful in an examination was made up of 50% of the boys and 40% of the girls. Find the number of girls in the school. </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
             </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 8
     <li>Using ruler and a pair of compasses only,
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>Construct
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>a quadrilateral PQRS with  /PS/= 6cm, <math>\angle</math>RSP=90°, /RS/ = 9cm, /QRI/ = 8.4cm and /PQ/ =5.4cm;</li>
                    <li>Sub-question ii</li>
                     <li>the bisectors of <math>\angle</math>RSP and <math>\angle</math>SPQ to meet at X;</li>
                     <li>Sub-question iii</li>
                     <li>the perpendicular XT to meet PS at T.</li> </ol>
                    <li>Sub-question iv</li>
                     <li>Sub-question v</li>
                </ol>
             </li>
             </li>
        </ol>
            <li>Measure /XT/. </li> </ol>
     </li>
     </li>
     <li>Question 9
     <li>[[File:WA2010 MATH P2Q009.jpg|center|thumb]]In the diagram, /AB/ = 8km, /BC/ = 13km,the bearing of A from B is 310° and the bearing of B from C is 230°. Calculate, correct to 3 significant figures,
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>the distance AC; </li>
                <ol type="i">
             <li>the bearing of C from A; </li>
                    <li>Sub-question i</li>
             <li>how far east of B, C is. </li> </ol>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 10
     <li><ol type="a">
        <ol type="a">
             <li>Copy and complete the table of values for the relation <math>y =-x^2+x+2 </math> for <math>-3\leq x \leq 3 </math>. </li>  
             <li>Sub-question a
   
                <ol type="i">
{| class="wikitable"
                    <li>Sub-question i</li>
|+
                    <li>Sub-question ii</li>
!x
                    <li>Sub-question iii</li>
!-3
                    <li>Sub-question iv</li>
!-2
                    <li>Sub-question v</li>
!-1
                </ol>
!0
            </li>
!1
            <li>Sub-question b
!2
                <ol type="i">
!3
                    <li>Sub-question i</li>
|-
                    <li>Sub-question ii</li>
|y
                    <li>Sub-question iii</li>
|
                    <li>Sub-question iv</li>
| -4
                    <li>Sub-question v</li>
|
                </ol>
|2
            </li>
|
            <li>Sub-question c
|
                <ol type="i">
| -4
                    <li>Sub-question i</li>
|}
                    <li>Sub-question ii</li>
 
                    <li>Sub-question iii</li>
 
                    <li>Sub-question iv</li>
            <li>Using scales of 2 cm to 1 unit on the x-axis and 2 cm to 2 units on the y-axis, draw a graph for the relation <math>y =-x^2+x+2 </math> </li>
                    <li>Sub-question v</li>
             <li>From the graph, find the<ol type="i">
                </ol>
                     <li>minimum value of y.</li>
            </li>
                     <li>roots of the equation <math>x^2-x-2 = 0 </math></li>
            <li>Sub-question d
                     <li>gradient of the curve at x = -0.5</li>
                <ol type="i">
</li> </ol>
                    <li>Sub-question i</li>
</li>
                    <li>Sub-question ii</li>
 
                    <li>Sub-question iii</li>
<li> <ol type="a">
                    <li>Sub-question iv</li>
[[File:WA2010 MATH P2Q011OA.jpg|center|thumb]]In the diagram, <math>\angle</math>PTQ = <math>\angle</math>PSR= 90°, /PQ/ = 10cm, /PS/ = 14.4cm and /TQ/ =6cm. Calculate the area of quadrilateral QRST.</li><li>Two opposite sides of a  square are each decreased by 10% while the other two are each increased by 15% to form a rectangle. Find the ratio of the area of the rectangle to that of the square. </li> </ol>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question e
                <ol type="i">
                     <li>Sub-question i</li>
                     <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                     <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
     <li>Question 11
     <li>The frequency distribution of the weight of 100 participants in a high jump competition is as shown below:
         <ol type="a">
         <ol type="a">
             <li>Sub-question a
             <li>Construct the cumulative frequency table. </li>
                <ol type="i">
             <li>Draw the cumulative frequency curve. </li>
                    <li>Sub-question i</li>
             <li>From the curve, estimate the:
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question f
                 <ol type="i">
                 <ol type="i">
                     <li>Sub-question i</li>
                     <li>median;</li>
                    <li>Sub-question ii</li>
                     <li>semi-interquartile range;</li>
                    <li>Sub-question iii</li>
                     <li>probability that a participant chosen at random weighs at least 60kg.</li> </ol>
                     <li>Sub-question iv</li>
             </li> </ol>
                     <li>Sub-question v</li>
                </ol>
             </li>
        </ol>
     </li>
     </li>
     <li>Question 12
     <li><ol type="a">
        <ol type="a">
             <li>The third term of a Geometric Progression (G.P) is 24 and its seventh term is . Find its first term. </li>
             <li>Sub-question a
             <li>Given that y varies directly as x and inversely as the square of z. If y =4, when x = 3.and z= 1, find y when x = 3 and z = 2. </li> </ol>
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
             <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
    </li>
    <li>Question 13
        <ol type="a">
            <li>Sub-question a
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question b
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question c
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question d
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question e
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
            <li>Sub-question f
                <ol type="i">
                    <li>Sub-question i</li>
                    <li>Sub-question ii</li>
                    <li>Sub-question iii</li>
                    <li>Sub-question iv</li>
                    <li>Sub-question v</li>
                </ol>
            </li>
        </ol>
     </li>
     </li>
</ol>
</ol>
[[Category:WAEC General Mathematics]]
[[Category:WAEC General Mathematics]]

Latest revision as of 09:20, 25 September 2024

Under Construction This page is currently under construction. Please check back later for updates.
If you can help improve this page, please contribute!

Objective Test Questions

  1. Simplify 0.000215 x 0.000028 and express your answer In standard form
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.03x10^{9}}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.02x10^{9}}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.03x10^{-9}}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6.02x10^{-9}}
  2. Factorise Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x-y-ax-ay}
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigl(x-y\Bigr)\Bigl(1-a\Bigr)}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigl(x+y\Bigr)\Bigl(1+a\Bigr)}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigl(x+y\Bigr)\Bigl(1-a\Bigr)}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Bigl(x-y\Bigr)\Bigl(1+a\Bigr)}
  3. In the diagram, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle PSR=22^\circ,\angle SPQ=58^\circ,} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle PQR=41^\circ} .Calculate the obtuse angle QRS.
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 99^\circ}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 100^\circ}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 121^\circ}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 165^\circ}
  4. The bar chart shows the marks distribution in an English test. Use it to answer questions 4 and 5.
  5. If 50% is the pass mark, how many students passed the test?
    1. 100
    2. 85
    3. 80
    4. 70
  6. What percentage of the students had marks ranging from 35 to 50?
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 55\frac{1}{3}%}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 60%}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 65%}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 66\frac{2}{3}%}
  7. A car uses one litre of petrol for every 14 km. If one litre of petrol costs N63.00, how far can the car go with N900.00 worth of petrol?
    1. 420 km
    2. 405km
    3. 210 km
    4. 200 km
  8. Correct 0.002473 to 3 significant figures.
    1. 0.002
    2. 0.0024
    3. 0.00247
    4. 0.0025
  9. Simplify: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\frac{1}{2}+2\frac{1}{3}x\frac{3}{4}-\frac{1}{2}}
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\frac{1}{3}}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\frac{1}{4}}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\frac{1}{8}}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\frac{3}{4}}
  10. The sum of 2 consecutive whole numbers is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{6}} of their product. Find the numbers.
    1. 3, 4
    2. 1, 2
    3. 2, 3
    4. 0,1
  11. What Is the value of m in the diagram?
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 20^\circ}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 30^\circ}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 40^\circ}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 50^\circ}
  12. In the diagram, QR// ST, /PQ/ = /PR/ and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle} PST = 75°. Find the value of y.
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 105^\circ}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 130^\circ}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 150^\circ}
  13. A casting is made up of Copper and Zinc If 65% of the casting is Zinc and there are 147g of Copper. what is the mass of the casting?
    1. 320 g
    2. 420 g
    3. 520 g
    4. 620 g
  14. Given that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P=\{{x:1\leq x\leq 6}\}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q= \{{x:2<x< 10}\}} , where x is an integer. Find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\Bigl(P\cap Q\Bigr)} ?
    1. 4
    2. 6
    3. 8
    4. 10
  15. The sum of 6 and one-third of x is one more than twice x. Find x.
    1. x = 7
    2. x = 5
    3. x = 3
    4. x = 2
  16. Given that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=\{{x:-2<x\leq 9}\}} , where x is an integer. What is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\Bigl(T\Bigr)}
    1. 9
    2. 10
    3. 11
    4. 12
  17. Solve the inequality: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\Bigl(x+1\Bigr)\leq 5\Bigl(x+2\Bigr) +15}
    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\geq -14}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\leq -14}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\geq -11}
  18. An empty rectangular tank is 250cm long. and 120cm wide. If 180 litres of water is poured into the tank, calculate the height of the water.
    1. 66.0 cm
    2. 5.5 cm
    3. 5.0 cm
    4. 4. cm
  19. Given that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5^{n+3}}{25^{2n-3}}=5^0} , find n
    1. n=1
    2. n=2
    3. n=3
    4. n=4
  20. Number of pets 0 1 2 3 4
    Number of students 8 4 5 10 3

    The table shows the number of pets kept by’ 30 | students in a class. If a student is picked at random from the class, what is the probability that. he/she kept more than one pet?

    1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{5}}
    2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}}
    3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{5}}
    4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{5}}
  21. Simplify Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{3}-\frac{6}{\sqrt{3}}+\frac{3}{\sqrt{27}}}
  22. In the diagram, triangles HKL and HIJ are similar Which of the following ratios is equal to
  23. In the diagram, the tangent MN makes an angle of 55° with chord PS. If O is the centre of the circle, find RPS.
    1. 55°
    2. 45°
    3. 35°
    4. 25°
  24. Simplify:
  25. A rectangle has length x cm and width (x-1) cm. If the perimeter is 16 cm, find the value of x.
  26. Given that tan x = 1, where 0° < x < 90°, evaluate
  27. If sin 3y=cos 2y and 0°<y< 90°, find the value of y.
    1. 18°
    2. 36°
    3. 54°
    4. 90°
  28. The sum of the exterior angles of an n-sided convex polygon is half the sum of its interior angles. Find n.
    1. 6
    2. 8
    3. 9
    4. 12
  29. What is the length of a rectangular garden whose perimeter is 32 cm and area 39 ?
    1. 25 cm
    2. 18 cm
    3. 13 cm
    4. 9 cm
  30. If y= , make x the subject of the formula.
  31. The nth term of tHe sequence: —2, 4, — 8, 16 is given by
  32. In the diagram, 0 is the centre of the circle SQR = 60°, SPR =y and SOR = 3x. Find the value of (x + y).
    1. 110°
    2. 100°
    3. 80°
    4. 70°
  33. How many times correct to XX number, will a man run round a track of diameter 100m to cover a distance of 1000 m7?
    1. 3
    2. 4
    3. 5
    4. 6
  34. The shaded portion in the diagram is the solution
  35. In the diagram, /EF/ = 8 cm, /FG/=x cm, /GH/ = (x+2) cm, EFC= 90°. If the area of the shaded portion is 40 , find the area of JEFG.
    1. 128
    2. 72
    3. 64
    4. 32
  36. In the diagram, GI is a tangent to the circle at H. EFI/GI, calculate the size of EHF
    1. 126°
    2. 72°
    3. 54°
    4. 28°
  37. Bala sold an article for #6,900.00 and made a profit of 15%. If he sold it for #6,600.00 he would make a:
    1. profit of 13%.
    2. loss of 12%.
    3. profit of 10%.
    4. loss of 5%.
  38. In the diagram above, ROS = 66° and POQ = 3 x. Some construction lines are shown. Calculate the value of x.
    1. 10°
    2. 11°
    3. 22°
    4. 30°
  39. The mean age of R men in a club is 50 years. Two men, aged 55 and 63, left the club and the mean age reduced by 1 year. Find the value of R.
    1. 18
    2. 20
    3. 22
    4. 28
  40. x 0 2 4 6
    y 1 2 3 4

    The table is for the relation y = mx + c where m and c are constants. Use it to answer questions 39 and 40.

  41. What is the equation of the line described in the table?
    1. y = 2x
    2. y = x+1
    3. y = x
    4. y=x+1
  42. What is the value of x when y = 5?
    1. 8
    2. 9
    3. 10
    4. 11
  43. The diagram is a net of a right rectangular pyramid. Calculate the total surface area.
    1. 208
    2. 112
    3. 92
    4. 76
  44. The diagram shows a rectangular cardboard from which a semi-circle is cut off. Calculate the area of the remaining part.
    1. 44
    2. 99
    3. 154
    4. 165
  45. The subtraction below is in base seven. Find the missing number
    1. 2
    2. 3
    3. 4
    4. 5
  46. In the diagram O is the centre of the circle Find the value of x
    1. 34
    2. 29
    3. 17
    4. 14
  47. If the sum of the roots of the equation (x — p) (2x +1) =0 is1, find the value of p.
  48. In the diagram, WOX = 60°,YOE = 50° and OXY =.30°. What is the bearing of x from Y?
    1. 300°
    2. 240°
    3. 190°
    4. 150°
  49. .|n an athletics competition, the probability that an athlete wins a 100 m race is and the probability that he wins in high jump is . What is the probability that he wins only one of the events?
  50. If is a perfect square, find the value of x
  51. If , the y =
  52. The mean of the numbers 2, 5, 2x and 7 is less than or equal to 5. Find the range of values. of x.

Theory

Section A

  1. , and are subsets of the universal set . Find
    1. The angle of depression of a boat from the mid-point of a vertical cliff is 35° If the boat is 120 m from the foot of the cliff, calculate the height of the cliff.
    2. )Towns P and Q are x km apart. Two motorist set out at the same time from P to Q at steady speeds of 60 km/h and 80 km/h. The faster motorist got to Q 30 minutes earlier than the other. Find the Value of x.
    1. In the diagram, PQR =125°, QRS=r, RST 80° and STU = 44°. Calculate the value of r.
    2. In the diagram, TS is a tangent to the circle at A. AB//CE, AEC =5x°, ADB = 60° and TAE = x. Find the value of x.
  2. The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 , calculate, correct to 3 significant figures, the:
    1. base radius, r;
    2. height, h;
    3. volume of the cone [ Take ]
  3. Two fair dice are thrown. M is the event described by " the sum of the scores is 10" and N is the event described by "the difference between the scores is 3".
    1. Write out the elements of M and N.
    2. Find the probability of M or N.
    3. Are M and N mutually exclusive? Give reasons.

Section B

    1. The area of a map is 1:20,000. Calculate the area, in square centimetres, on the map of a forest reserve which covers 85 km².
    2. A rectangular playing field is 18 m wide. It is surrounded by a path 6 m wide such that its area is equal to the area of the path. Calculate the length of the field.
    3. The diagram shows a circle centre O. If POQ = x°, the diameter of the circle is 7 cm and the area of the shaded portion is 27.5 cm². Find, correct to the nearest degree, the value of x. [Take ]
    1. Madam Kwakyewaa imported a quantity of frozen fish costing GH¢400.00 The goods attracted an import duty of 15% of its cost. She also paid a sales tax of 10% of the total cost of the goods including the import duty and then sold the goods for GH¢660.00. Calculate her percentage profit.
    2. In a school, there are 1000 boys and a number of girls. The 48% of the total number of students that were successful in an examination was made up of 50% of the boys and 40% of the girls. Find the number of girls in the school.
  1. Using ruler and a pair of compasses only,
    1. Construct
      1. a quadrilateral PQRS with /PS/= 6cm, RSP=90°, /RS/ = 9cm, /QRI/ = 8.4cm and /PQ/ =5.4cm;
      2. the bisectors of RSP and SPQ to meet at X;
      3. the perpendicular XT to meet PS at T.
    2. Measure /XT/.
  2. In the diagram, /AB/ = 8km, /BC/ = 13km,the bearing of A from B is 310° and the bearing of B from C is 230°. Calculate, correct to 3 significant figures,
    1. the distance AC;
    2. the bearing of C from A;
    3. how far east of B, C is.
    1. Copy and complete the table of values for the relation for .
    2. x -3 -2 -1 0 1 2 3
      y -4 2 -4


    3. Using scales of 2 cm to 1 unit on the x-axis and 2 cm to 2 units on the y-axis, draw a graph for the relation
    4. From the graph, find the
      1. minimum value of y.
      2. roots of the equation
      3. gradient of the curve at x = -0.5
      1. In the diagram, PTQ = PSR= 90°, /PQ/ = 10cm, /PS/ = 14.4cm and /TQ/ =6cm. Calculate the area of quadrilateral QRST.
      2. Two opposite sides of a square are each decreased by 10% while the other two are each increased by 15% to form a rectangle. Find the ratio of the area of the rectangle to that of the square.
    5. The frequency distribution of the weight of 100 participants in a high jump competition is as shown below:
      1. Construct the cumulative frequency table.
      2. Draw the cumulative frequency curve.
      3. From the curve, estimate the:
        1. median;
        2. semi-interquartile range;
        3. probability that a participant chosen at random weighs at least 60kg.
      1. The third term of a Geometric Progression (G.P) is 24 and its seventh term is . Find its first term.
      2. Given that y varies directly as x and inversely as the square of z. If y =4, when x = 3.and z= 1, find y when x = 3 and z = 2.